Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness
نویسندگان
چکیده
Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy.
منابع مشابه
Removal of Wolbachia from Brugia pahangi is closely linked to worm death and fecundity but does not result in altered lymphatic lesion formation in Mongolian gerbils (Meriones unguiculatus).
Approximately 30 years ago, researchers reported intracellular bacteria in filarial nematodes. These bacteria are relatives of the arthropod symbiont Wolbachia and occur in many filarial nematodes, including Brugia pahangi and Brugia malayi. Wolbachia bacteria have been implicated in a variety of roles, including filaria development and fecundity and the pathogenesis of lymphatic lesions associ...
متن کاملA Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic Enzymes and Cytoskeleton in Maintenance of Endosymbiosis
The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated....
متن کاملAsymmetric Wolbachia Segregation during Early Brugia malayi Embryogenesis Determines Its Distribution in Adult Host Tissues
Wolbachia are required for filarial nematode survival and fertility and contribute to the immune responses associated with human filarial diseases. Here we developed whole-mount immunofluorescence techniques to characterize Wolbachia somatic and germline transmission patterns and tissue distribution in Brugia malayi, a nematode responsible for lymphatic filariasis. In the initial embryonic divi...
متن کاملMolecular Characterization of NAD+-Dependent DNA Ligase from Wolbachia Endosymbiont of Lymphatic Filarial Parasite Brugia malayi
The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+)-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA re...
متن کاملWolbachia Genomes: Insights into an Intracellular Lifestyle
The genome sequence of the Wolbachia endosymbiont that infects the nematode Brugia malayi has recently been determined together with three partial Wolbachia genomes from different Drosophila species. These data along with the previously published Wolbachia genome from Drosophila melanogaster provide new insights into how this endosymbiont has managed to become so successful.
متن کامل